线性代数 A 习题课讲义 05

Caiyou Yuan

May 10, 2021

复 Jordan 标准型

- (1) λ矩阵
- (2) 不变子空间直和分解

λ -矩阵

- λ矩阵等价 ←⇒相同的不变因子/行列式因子
- A, B 相似 $\iff \lambda I A$ 和 $\lambda I B$ 等价
- 初等因子: 将不变因子分解为一次因子方幂的乘积; 同级复矩阵相似 ⇔ 初等因子相同

例题

1. 求

$$J_n(\lambda) = \begin{pmatrix} \lambda & 1 & & & \\ & \lambda & 1 & & & \\ & & \ddots & \ddots & & \\ & & & \lambda & 1 & \\ & & & & \lambda & \end{pmatrix}_{n \times n}$$

的所有不变因子和初等因子.

2. (1) 设

$$A(\lambda) = \begin{pmatrix} f_1(\lambda)g_1(\lambda) & 0 \\ 0 & f_2(\lambda)g_2(\lambda) \end{pmatrix}, \quad B(\lambda) = \begin{pmatrix} f_2(\lambda)g_1(\lambda) & 0 \\ 0 & f_1(\lambda)g_2(\lambda) \end{pmatrix},$$

如果多项式 $f_1(\lambda), f_2(\lambda)$ 都与 $g_1(\lambda), g_2(\lambda)$ 互素,则 $A(\lambda)$ 和 $B(\lambda)$ 等价.

(2) 对于对角 λ 矩阵 $D(\lambda)$, 假设对角元素可以分解为一次因式方幂的乘积,证明所有这些一次因式的方幂就是 $D(\lambda)$ 的全部初等因子.

(3) 求

$$J = \begin{pmatrix} J_{n_1}(\lambda_1) & & & \\ & J_{n_2}(\lambda_2) & & \\ & & \ddots & \\ & & & J_{n_s}(\lambda_s) \end{pmatrix}$$

的所有初等因子.

(4) 求矩阵

$$A = \begin{pmatrix} -1 & -2 & 6 \\ -1 & 0 & 3 \\ -1 & -1 & 4 \end{pmatrix}$$

在复数域上的 Jordan 标准型.

不变子空间直和分解

1. 设 A 是域 F 上线性空间 V 上的线性变换,A 的最小多项式 $m(\lambda)$ 在 $F[\lambda]$ 中的标准分解为

$$m(\lambda) = p_1^{l_1}(\lambda)p_2^{l_2}(\lambda)\cdots p_s^{l_s}(\lambda)$$

其中 $p_i(\lambda)$ 是域 F 上的两两不同的首一不可约多项式.

(1) 证明:

$$V = \operatorname{Ker} p_1^{l_1}(A) \oplus \operatorname{Ker} p_2^{l_2}(A) \oplus \cdots \oplus \operatorname{Ker} p_s^{l_s}(A)$$

(2) 设 $B_j=p_j(A|W_j)$, 其中 $W_j=\mathrm{Ker}\,p_j^{l_j}$. 证明: B_j 是 W_j 上的幂零变换,且它的幂零指数为 l_j .

(3) 证明: $\operatorname{Ker} p_j^{k_j}(A) = \operatorname{Ker} p_j^{l_j}, \forall k_j \geq l_j.$

(4) 以下进一步假设 $p_j(\lambda) = \lambda - \lambda_j$. 证明: 如果 A 的特征多项式可以分解为

$$f(\lambda) = (\lambda - \lambda_1)^{r_1} (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s}$$

则 W_j 的维数为 r_j .

- 2. 上面已经说明 B_j 是 r_j 维空间 W_j 上幂零指数为 l_j 的幂零变换. 所以我们需要研究幂零变换的结构.
 - (1) 记 $k_j = \dim \operatorname{Ker} B_j$, 说明 W 能分解为 $k_j \wedge B_j$ 强循环子空间的直和.

(2) 证明 W_j 中存在一个基,使得 B_j 在此基下的矩阵为 Jordan 型矩阵, 每个 Jordan 块的主对角元都 是 0,且级数不超过 l_j , Jordan 块的总数是 r_j – rank B_j , t 级 Jordan 块的个数 N(t) 为,

$$N(t) = \operatorname{rank} B_j^{t+1} + \operatorname{rank} B_j^{t-1} - 2\operatorname{rank} B_j^t.$$

例题

1. 设 B 是域 F 上 n 维线性空间 V 上的幂零变换,且它的幂零指数为 l, 证明:

$$l \le 1 + \operatorname{rank}(B)$$

2. 设域 F 上的 n 级矩阵

$$A = \operatorname{diag} \{J_{n_1}(\lambda_1), J_{n_2}(\lambda_2), \cdots, J_{n_s}(\lambda_s)\}$$

其中 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 两两不同, 证明 $\dim C(A) = n, C(A) = F[A]$.