Proposition 1.20.1. Given three arbitrary spaces E_{1}, E_{2}, E_{3} there exists a linear isomorphism

$$
f: E_{1} \otimes E_{2} \otimes E_{3} \stackrel{\cong}{\rightrightarrows}\left(E_{1} \otimes E_{2}\right) \otimes E_{3}
$$

such that

$$
f(x \otimes y \otimes z)=(x \otimes y) \otimes z
$$

Proof. Consider the trilinear mapping

$$
E_{1} \times E_{2} \times E_{3} \rightarrow\left(E_{1} \otimes E_{2}\right) \otimes E_{3}
$$

defined by

$$
(x, y, z) \rightarrow(x \otimes y) \otimes z .
$$

In view of the factorization property, there is induced a linear map

$$
f: E_{1} \otimes E_{2} \otimes E_{3} \rightarrow\left(E_{1} \otimes E_{2}\right) \otimes E_{3}
$$

such that

$$
\begin{equation*}
f(x \otimes y \otimes z)=(x \otimes y) \otimes z . \tag{1.14}
\end{equation*}
$$

On the other hand, to each fixed $z \in E_{3}$ there corresponds a bilinear mapping $\beta_{z}: E_{1} \times E_{2} \rightarrow E_{1} \otimes E_{2} \otimes E_{3}$ defined by

$$
\beta_{z}(x, y)=x \otimes y \otimes z
$$

The mapping β_{z} induces a linear map

$$
g_{z}: E_{1} \otimes E_{2} \rightarrow E_{1} \otimes E_{2} \otimes E_{3}
$$

such that

$$
\begin{equation*}
g_{z}(x \otimes y)=x \otimes y \otimes z \tag{1.15}
\end{equation*}
$$

Define a bilinear mapping

$$
\psi:\left(E_{1} \otimes E_{2}\right) \times E_{3} \rightarrow E_{1} \otimes E_{2} \otimes E_{3}
$$

by

$$
\begin{equation*}
\psi(u, z)=g_{z}(u) \quad u \in E_{1} \otimes E_{2}, z \in E_{3} . \tag{1.16}
\end{equation*}
$$

Then ψ induces a linear map

$$
g:\left(E_{1} \otimes E_{2}\right) \otimes E_{3} \rightarrow E_{1} \otimes E_{2} \otimes E_{3}
$$

such that

$$
\begin{equation*}
\psi(u, z)=g(u \otimes z) \quad u \in E_{1} \otimes E_{2}, z \in E_{3} . \tag{1.17}
\end{equation*}
$$

Combining (1.17), (1.16), and (1.15) we find

$$
\begin{equation*}
g((x \otimes y) \otimes z)=\psi(x \otimes y, z)=g_{z}(x \otimes y)=x \otimes y \otimes z \tag{1.18}
\end{equation*}
$$

Equations (1.14) and (1.18) yield $g f(x \otimes y \otimes z)=x \otimes y \otimes z$ and $f g((x \otimes y) \otimes z)=(x \otimes y) \otimes z$ showing that f is a linear isomorphism of $E_{1} \otimes E_{2} \otimes E_{3}$ onto $\left(E_{1} \otimes E_{2}\right) \otimes E_{3}$ and g is the inverse isomorphism.

